piwik-script

Intern
    Lehrstuhl für Informatik VI - Künstliche Intelligenz und Angewandte Informatik

    Christian Reul, M. Sc.

    University of Würzburg
    Department for Artificial Intelligence
    and Applied Computer Science
    Am Hubland
    D-97074 Würzburg 

    Room:  B015
    Phone: +49 931 / 31 - 80722
    Fax:    +49 931 / 31 - 86732
    christian.reul@uni-wuerzburg.de

     

    Projects

    KALLIMACHOS

     

    Publications

    • Calamari - A High-Perform... - Download
      Calamari - A High-Performance Tensorflow-based Deep Learning Package for Optical Character Recognition. Wick, Christoph; Reul, Christian; Puppe, Frank in Digital Humanities Quarterly (submitted to) (2018).
       
    • Improving OCR Accuracy on... - Download
      Improving OCR Accuracy on Early Printed Books by combining Pretraining, Voting, and Active Learning. Reul, Christian; Springmann, Uwe; Wick, Christoph; Puppe, Frank in JLCL: Special Issue on Automatic Text and Layout Recognition (accepted for) (2018).
       
    • Ground Truth for training OCR engines on historical documents. Springmann, Uwe; Reul, Christian; Dipper, Stefanie; Baiter, Johannes in JLCL: Special Issue on Automatic Text and Layout Recognition (submitted to) (2017).
       
    • Improving OCR Accuracy on... - Download
      Improving OCR Accuracy on Early Printed Books using Deep Convolutional Networks. Wick, Christoph; Reul, Christian; Puppe, Frank in JLCL: Special Issue on Automatic Text and Layout Recognition (submitted to) (2017).
       
    • Transfer Learning for OCR... - Download
      Transfer Learning for OCRopus Model Training on Early Printed Books. Reul, Christian; Wick, Christoph; Springmann, Uwe; Puppe, Frank in 027.7 Journal for Library Culture (2017).
       
    • Improving OCR Accuracy on... - Download
      Improving OCR Accuracy on Early Printed Books by Utilizing Cross Fold Training and Voting. Reul, Christian; Springmann, Uwe; Wick, Christoph; Puppe, Frank in 2018 13th IAPR International Workshop on Document Analysis Systems (DAS) (2017).
       
    • Case Study of a highly au... - Download
      Case Study of a highly automated Layout Analysis and OCR of an incunabulum: ‘Der Heiligen Leben’ (1488). Reul, Christian; Dittrich, Marco; Gruner, Martin in Proceedings of the 2nd International Conference on Digital Access to Textual Cultural Heritage (2017).
       
    • LAREX – A semi-automati... - Download
      LAREX – A semi-automatic open-source Tool for Layout Analysis and Region Extraction on Early Printed Books. Reul, Christian; Springmann, Uwe; Puppe, Frank in Proceedings of the 2nd International Conference on Digital Access to Textual Cultural Heritage (2017).
       
    • Expectation-driven Text E... - Download
      Expectation-driven Text Extraction from Medical Ultrasound Images. Reul, Christian; Köberle, Philipp; Üçeyler, Nurcan; Puppe, Frank in Studies in Health Technology and Informatics (2016).
       
    • Autonomous Quadrocopter f... - Download
      Autonomous Quadrocopter for Search, Count and Localization of Objects. Gageik, Nils; Reul, Christian; Montenegro, Sergio in Recent Advances in Robotic Systems (2016).
       
    • Cross Dataset Evaluation ... - Download
      Cross Dataset Evaluation of Feature Extraction Techniques for Leaf Classification. Reul, Christian; Toepfer, Martin; Puppe, Frank in International Journal of Artificial Intelligence & Applications (2016).
       

    Vita

    Job History

    • Since October 2015: Research assistant at the Chair for Artificial Intelligence and Applied Computer Science at the University of Würzburg.
    • 2013-2015: Student research assistant at the Chair for Algorithms, Complexity and Knowledge-Based Systems at the University of Würzburg.

    Education

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Facebook weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Twitter weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Kontakt

    Lehrstuhl für Informatik VI (Künstliche Intelligenz und angewandte Informatik)
    Am Hubland
    97074 Würzburg

    Tel.: +49 931 31-86731
    E-Mail

    Suche Ansprechpartner

    Hubland Süd, Geb. M2